计算:8.01×1.25+8.02×1.24+8.03×1.23+8.04×1.22+8.05×1.21的整数部分.

1个回答

  • 解题思路:当两个数的和不变时,两数越接近(即差越小)它们积越大,所以8.05×1.21<8.04×1.22<8.03×1.23<8.02×1.24<8.01×1.25,然后判断出49.2<8.01×1.25+8.02×1.24+8.03×1.23+8.04×1.22+8.05×1.21<50,然后再进一步解答.

    当两个数的和不变时,两数越接近(即差越小)它们积越大,

    所以8.05×1.21<8.04×1.22<8.03×1.23<8.02×1.24<8.01×1.25,

    因为8.01×1.25+8.02×1.24+8.03×1.23+8.04×1.22+8.05×1.21<8.01×1.25×5<8×1.25×5=50,

    8.01×1.25+8.02×1.24+8.03×1.23+8.04×1.22+8.05×1.21>8×(1.21+1.22+1.23+1.24+1.25)=49.2,

    所以8.01×1.25+8.02×1.24+8.03×1.23+8.04×1.22+8.05×1.21的整数部分是49.

    答:8.01×1.25+8.02×1.24+8.03×1.23+8.04×1.22+8.05×1.21的整数部分是49.

    点评:

    本题考点: 估计与估算.

    考点点评: 明确当两个数的和不变时,两数越接近(即差越小)它们积越大,是解答此题的关键.