如图所示,一辆质量为1.5kg的小车静止在光滑水平面上,一个质量为0.50kg的木块,以2.0m/s的速度水平滑上小车,

1个回答

  • (1)根据运动过程中动量守恒得:

    mv 0=(M+m)v 1
    解得: v 1 =

    m

    M+m v 0 =0.5m/s

    (2)根据动量定理得:

    μmgt=Mv 1-0

    t 1 =

    M v 0

    (M+m)μg =0.75s

    (3)若M>m,从第一次木板以v 1反弹开始,有

    Mv 1-mv 1=(M+m)v 2
    Mv 2-mv 2=(M+m)v 3

    Mv n-1-mv n-1=(M+m)v n
    解得:

    v 2 =

    M-m

    M+m v 1

    v 3 =

    M-m

    M+m v 2

    v n =

    M-m

    M+m v n-1 = (

    M-m

    M+m ) n-1

    m

    M+m v 0

    根据动能定理得:

    μm gx 1 =

    1

    2 mv 0 2 -

    1

    2 (M+m )v 1 2

    μm gx 2 =

    1

    2 mv 1 2 -

    1

    2 (M+m )v 2 2

    μm gx n =

    1

    2 mv n 2 -

    1

    2 (M+m)v n-1 2

    解得:

    x 1 =

    M

    2μg(M+m) v 0 2

    x 2 =

    2M

    μg(M+m) v 1 2

    x 3 =

    2M

    μg(M+m) v 2 2 =

    2M

    μg(M+m) (

    M-m

    M+m ) 2 v 1 2

    x n =

    2M

    μg(M+m) v n-1 2 =

    2M

    μg(M+m) (

    M-m

    M+m ) 2(n-2) v 1 2

    x 2,x 3,x 4,…x n是一个首项 为

    2M

    μg(M+m)

    v 21

    公比为 (

    M-m

    M+m ) 2 的等比数列,共有n-1项

    S n = x 1 +

    2M

    μg(M+m)

    v 21

    n

    n=2 (

    M-m

    M+m ) 2(n-2)

    = x 1 +

    2M

    μg(M+m)

    v 21 •

    1- (

    M-m

    M+m ) 2(n-1)

    1- (

    M-m

    M+m ) 2

    =

    M

    2μg(M+m)

    v 20 +

    2M

    μg(M+m)

    v 21 •

    1- (

    M-m

    M+m ) 2(n-1)

    1- (

    M-m

    M+m ) 2

    =

    M

    2μg(M+m)

    v 20 +

    2M

    μg(M+m) • (

    m

    M+m ) 2

    v 20 •

    1- (

    M-m

    M+m ) 2(n-1)

    1- (

    M-m

    M+m ) 2

    =

    M

    v 20

    2μg(M+m) +

    m

    v 20

    2μg(M+m) •[1- (

    M-m

    M+m ) 2(n-1) ]

    在板上滑行的时间(不包含从共速至与平台碰撞的时间)

    -μmgt 2=Mv 2-Mv 1
    -μmgt 3=Mv 3-Mv 2

    -μmgt n=Mv n-Mv n-1
    t 2 =
    2M
    μg(M+m) v 1
    t 3 =
    2M
    μg(M+m) v 2 =
    2M
    μg(M+m) •
    M-m
    M+m v 1
    t n =
    2M
    μg(M+m) v n-1 = t n =
    2M
    μg(M+m) •(
    M-m
    M+m ) n-2 v 1

    t 2,t 3,t 4,…t n是一个首项 为

    2M

    μg(M+m) v 1 公比为 (

    M-m

    M+m ) 的等比数列,共有n-1项

    t n = t 1 +

    2M

    μg(M+m) v 1

    n

    n=2 (

    M-m

    M+m ) n-2 = t 1 +

    2M

    μg(M+m) v 1 •

    1- (

    M-m

    M+m ) (n-1)

    1-(

    M-m

    M+m )

    =

    M v 0

    (M+m)μg +

    2M

    μg(M+m) v 1 •

    1- (

    M-m

    M+m ) (n-1)

    1-(

    M-m

    M+m )

    =

    M v 0

    (M+m)μg +

    2M

    μg(M+m) •

    m

    M+m v 0 •

    1- (

    M-m

    M+m ) (n-1)

    1-(

    M-m

    M+m )

    =

    M v 0

    μg(M+m) •[2- (

    M-m

    M+m ) (n-1) ]

    同理可得:若M<m,

    x 2,x 3,x 4,…x n是一个首项为

    2M

    μg(M+m)

    v 21

    公比为 (

    m-M

    m+M ) 2 的等比数列,

    共有n-1项

    S n = x 1 +

    2M

    μg(M+m)

    v 21

    n

    n=2 (

    m-M

    m+M ) 2(n-2)

    = x 1 +

    2M

    μg(M+m)

    v 21

    n

    n=2 (

    m-M

    m+M ) 2(n-2)

    =

    M

    2μg(M+m)

    v 20 +

    2M

    μg(M+m)

    v 21 •

    1- (

    m-M

    m+M ) 2(n-1)

    1- (

    m-M

    m+M ) 2

    =

    M

    2μg(M+m)

    v 20 +

    2M

    μg(M+m) • (

    m

    M+m ) 2

    v 20 •

    1- (

    m-M

    m+M ) 2(n-1)

    1- (

    m-M

    m+M ) 2

    =

    M

    v 20

    2μg(M+m) +

    m

    v 20

    2μg(M+m) •[1- (

    m-M

    m+M ) 2(n-1) ]

    在板上滑行的时间(不包含从共速至与平台碰撞的时间)

    -μmgt 2=mv 2-mv 1
    -μmgt 3=mv 3-mv 2

    -μmgt n=mv n-mv n-1
    t 2 =

    2m

    μg(m+M) v 1

    t 2 =

    2m

    μg(m+M) v 2 =

    2m

    μg(m+M) •

    m-M

    m+M v 1

    所以 t n =

    2m

    μg(m+M) v n-1 =

    2m

    μg(m+M) •(

    m-M

    m+M ) n-2 v 1

    t 2,t 3,t 4,…t n是一个首项 为

    2m

    μg(m+M) v 1 ,公比为 (

    m-M

    m+M ) 的等比数列,共有n-1项

    t n = t 1 +

    2m

    μg(m+M) v 1

    n

    n=2 (

    m-M

    m+M ) n-2 = t 1 +

    2m

    μg(m+M) v 1 •

    1- (

    m-M

    m+M ) (n-1)

    1-(

    m-M

    m+M )

    =

    M v 0

    (M+m)μg +

    2m

    μg(m+M) v 1 •

    1- (

    m-M

    m+M ) (n-1)

    1-(

    m-M

    m+M )

    =

    M v 0

    (M+m)μg +

    2m

    μg(m+M) •

    m

    M+m v 0 •

    1- (

    m-M

    m+M ) (n-1)

    1-(

    m-M

    m+M )

    =

    M v 0

    (M+m)μg +

    m 2 v 0

    μgM(m+M) •[1- (

    m-M

    m+M ) (n-1) ] .

    答:(1)木块与小车共同运动的速度的大小为0.5m/s;

    (2)木块在小车上相对滑行的时间为0.75s;

    (3)从木块滑上小车开始到木块与小车第n共同运动的时间为

    M v 0

    μg(M+m) •[2- (

    M-m

    M+m ) (n-1) ] 或

    M v 0

    (M+m)μg +

    m 2 v 0

    μgM(m+M) •[1- (

    m-M

    m+M ) (n-1) ] ,木块在小车上滑行的路程为

    M

    v 20

    2μg(M+m) +

    m

    v 20

    2μg(M+m) •[1- (

    M-m

    M+m ) 2(n-1) ] 或

    M

    v 20

    2μg(M+m) +

    m

    v 20

    2μg(M+m) •[1- (

    m-M

    m+M ) 2(n-1) ] .