(1)根据运动过程中动量守恒得:
mv 0=(M+m)v 1
解得: v 1 =
m
M+m v 0 =0.5m/s
(2)根据动量定理得:
μmgt=Mv 1-0
t 1 =
M v 0
(M+m)μg =0.75s
(3)若M>m,从第一次木板以v 1反弹开始,有
Mv 1-mv 1=(M+m)v 2
Mv 2-mv 2=(M+m)v 3…
Mv n-1-mv n-1=(M+m)v n
解得:
v 2 =
M-m
M+m v 1
v 3 =
M-m
M+m v 2
…
v n =
M-m
M+m v n-1 = (
M-m
M+m ) n-1
m
M+m v 0
根据动能定理得:
μm gx 1 =
1
2 mv 0 2 -
1
2 (M+m )v 1 2
μm gx 2 =
1
2 mv 1 2 -
1
2 (M+m )v 2 2
…
μm gx n =
1
2 mv n 2 -
1
2 (M+m)v n-1 2
解得:
x 1 =
M
2μg(M+m) v 0 2
x 2 =
2M
μg(M+m) v 1 2
x 3 =
2M
μg(M+m) v 2 2 =
2M
μg(M+m) (
M-m
M+m ) 2 v 1 2
x n =
2M
μg(M+m) v n-1 2 =
2M
μg(M+m) (
M-m
M+m ) 2(n-2) v 1 2
x 2,x 3,x 4,…x n是一个首项 为
2M
μg(M+m)
v 21
公比为 (
M-m
M+m ) 2 的等比数列,共有n-1项
S n = x 1 +
2M
μg(M+m)
v 21
n
n=2 (
M-m
M+m ) 2(n-2)
= x 1 +
2M
μg(M+m)
v 21 •
1- (
M-m
M+m ) 2(n-1)
1- (
M-m
M+m ) 2
=
M
2μg(M+m)
v 20 +
2M
μg(M+m)
v 21 •
1- (
M-m
M+m ) 2(n-1)
1- (
M-m
M+m ) 2
=
M
2μg(M+m)
v 20 +
2M
μg(M+m) • (
m
M+m ) 2
v 20 •
1- (
M-m
M+m ) 2(n-1)
1- (
M-m
M+m ) 2
=
M
v 20
2μg(M+m) +
m
v 20
2μg(M+m) •[1- (
M-m
M+m ) 2(n-1) ]
在板上滑行的时间(不包含从共速至与平台碰撞的时间)
-μmgt 2=Mv 2-Mv 1
-μmgt 3=Mv 3-Mv 2…
-μmgt n=Mv n-Mv n-1
t 2 =
2M
μg(M+m) v 1
t 3 =
2M
μg(M+m) v 2 =
2M
μg(M+m) •
M-m
M+m v 1
t n =
2M
μg(M+m) v n-1 = t n =
2M
μg(M+m) •(
M-m
M+m ) n-2 v 1
t 2,t 3,t 4,…t n是一个首项 为
2M
μg(M+m) v 1 公比为 (
M-m
M+m ) 的等比数列,共有n-1项
t n = t 1 +
2M
μg(M+m) v 1
n
n=2 (
M-m
M+m ) n-2 = t 1 +
2M
μg(M+m) v 1 •
1- (
M-m
M+m ) (n-1)
1-(
M-m
M+m )
=
M v 0
(M+m)μg +
2M
μg(M+m) v 1 •
1- (
M-m
M+m ) (n-1)
1-(
M-m
M+m )
=
M v 0
(M+m)μg +
2M
μg(M+m) •
m
M+m v 0 •
1- (
M-m
M+m ) (n-1)
1-(
M-m
M+m )
=
M v 0
μg(M+m) •[2- (
M-m
M+m ) (n-1) ]
同理可得:若M<m,
x 2,x 3,x 4,…x n是一个首项为
2M
μg(M+m)
v 21
公比为 (
m-M
m+M ) 2 的等比数列,
共有n-1项
S n = x 1 +
2M
μg(M+m)
v 21
n
n=2 (
m-M
m+M ) 2(n-2)
= x 1 +
2M
μg(M+m)
v 21
n
n=2 (
m-M
m+M ) 2(n-2)
=
M
2μg(M+m)
v 20 +
2M
μg(M+m)
v 21 •
1- (
m-M
m+M ) 2(n-1)
1- (
m-M
m+M ) 2
=
M
2μg(M+m)
v 20 +
2M
μg(M+m) • (
m
M+m ) 2
v 20 •
1- (
m-M
m+M ) 2(n-1)
1- (
m-M
m+M ) 2
=
M
v 20
2μg(M+m) +
m
v 20
2μg(M+m) •[1- (
m-M
m+M ) 2(n-1) ]
在板上滑行的时间(不包含从共速至与平台碰撞的时间)
-μmgt 2=mv 2-mv 1
-μmgt 3=mv 3-mv 2
…
-μmgt n=mv n-mv n-1
t 2 =
2m
μg(m+M) v 1
t 2 =
2m
μg(m+M) v 2 =
2m
μg(m+M) •
m-M
m+M v 1
所以 t n =
2m
μg(m+M) v n-1 =
2m
μg(m+M) •(
m-M
m+M ) n-2 v 1
t 2,t 3,t 4,…t n是一个首项 为
2m
μg(m+M) v 1 ,公比为 (
m-M
m+M ) 的等比数列,共有n-1项
t n = t 1 +
2m
μg(m+M) v 1
n
n=2 (
m-M
m+M ) n-2 = t 1 +
2m
μg(m+M) v 1 •
1- (
m-M
m+M ) (n-1)
1-(
m-M
m+M )
=
M v 0
(M+m)μg +
2m
μg(m+M) v 1 •
1- (
m-M
m+M ) (n-1)
1-(
m-M
m+M )
=
M v 0
(M+m)μg +
2m
μg(m+M) •
m
M+m v 0 •
1- (
m-M
m+M ) (n-1)
1-(
m-M
m+M )
=
M v 0
(M+m)μg +
m 2 v 0
μgM(m+M) •[1- (
m-M
m+M ) (n-1) ] .
答:(1)木块与小车共同运动的速度的大小为0.5m/s;
(2)木块在小车上相对滑行的时间为0.75s;
(3)从木块滑上小车开始到木块与小车第n共同运动的时间为
M v 0
μg(M+m) •[2- (
M-m
M+m ) (n-1) ] 或
M v 0
(M+m)μg +
m 2 v 0
μgM(m+M) •[1- (
m-M
m+M ) (n-1) ] ,木块在小车上滑行的路程为
M
v 20
2μg(M+m) +
m
v 20
2μg(M+m) •[1- (
M-m
M+m ) 2(n-1) ] 或
M
v 20
2μg(M+m) +
m
v 20
2μg(M+m) •[1- (
m-M
m+M ) 2(n-1) ] .