(1)∵f(x),g(x)的图象过P(2,0),∴f(2)=0
即2×2 3+a×2=0,a=-8.…(2分)
∴f(x)=2x 3-8x
f′(x)=6x 2-8,g′(x)=2bx…(4分)
f′(2)=6×4-8=16
又g′(2)=4b
16=4b∴b=4
∴g(x)=4x 2+c
把(2,0)代入得:0=16+c,∴c=-16
∴g(x)=4x 2-16,
综上a=-8,b=4,c=-16…(6分)
(2)F(x)=2x 3+4x 2-8x-16,F′(x)=6x 2+8x-8,
解不等式
F′(x)=6 x 2 +8x-8≥0. 得x≤-2或x ≥
2
3 .
即函数的调增区间为:(-∞,-2],[
2
3 ,+∞)
同理,由F′(x)≤0,得-2≤x≤
2
3 ,即函数的减区间为: [-2,
2
3 ] .…(8分)
因此,当-2<m≤
2
3 时,F(x ) min =F(m)=2 m 3 +4 m 2 -8m-16;…(10分)
当m>
2
3 时,F(x ) min =F(
2
3 )=-
512
27 .…(12分)