已知:如图,在△ABC中,BE、CF分别是AC、AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB

1个回答

  • 解题思路:三角形全等条件中必须是三个元素,本题已经有两条对应边相等,只要再找到它们的夹角相等就可以了.

    证明:∵BE、CF分别是AC、AB两条边上的高,

    ∴∠ABD+∠BAC=90°,

    ∠GCA+∠BAC=90°,

    ∴∠GCA=∠ABD,

    在△GCA和△ABD中,

    GC=AB

    ∠GCA=∠ABD

    CA=BD,

    ∴△GCA≌△ABD.

    ∴AG=AD.

    点评:

    本题考点: 全等三角形的判定与性质.

    考点点评: 本题重点考查了三角形全等的判定定理中的SAS定理的运用,要在图形上找出全等的三角形,让寻找条件进行证明.