问一下∫1/cos(2x)dx如何积分

3个回答

  • 1/cos(nx) = 1/(cos²(nx/2) - sin²(nx/2))

    = (1/2)((cos(nx/2) - sin(nx/2))/(cos(nx/2) + sin(nx/2)) - (-cos(nx/2) - sin(nx/2))/(cos(nx/2) - sin(nx/2)))

    ∫(cos(nx/2) - sin(nx/2))/(cos(nx/2) + sin(nx/2))dx

    =(2/n)∫(1/t)dt (令(cos(nx/2) + sin(nx/2)=t)

    =(2/n)ln|t|

    =(2/n)ln|cos(nx/2) + sin(nx/2)| + C1

    同理

    ∫(-cos(nx/2) - sin(nx/2))/(cos(nx/2) - sin(nx/2))dx

    =(2/n)ln|cos(nx/2) - sin(nx/2)| + C2

    ∫1/cos(nx)dx = ∫1/(cos²(nx/2) - sin²(nx/2))dx

    = ∫(1/2)((cos(nx/2) - sin(nx/2))/(cos(nx/2) + sin(nx/2)) - (-cos(nx/2) - sin(nx/2))/(cos(nx/2) - sin(nx/2)))dx

    =(1/2)((2/n)ln|cos(nx/2) + sin(nx/2)| - (2/n)ln|cos(nx/2) - sin(nx/2)|) + C

    =(1/n)(ln|cos(nx/2) + sin(nx/2)| - ln|cos(nx/2) - sin(nx/2)|) + C

    问题补充:能不能给我解法?我这里∫ 1/cos(nx)dx答案是(1/n)(ln|cos(nx/2)-sin(nx/2)|-ln|sin(nx/2)+cos(nx/2)|)+c,这怎么解出来的?

    验证一下不就知道了,

    (1/n)(ln|cos(nx/2)-sin(nx/2)|-ln|sin(nx/2)+cos(nx/2)|)+c

    求导 = (1/n)(n/2)

    ((-sin(nx/2)-cos(nx/2))/(cos(nx/2)-sin(nx/2))

    - (cos(nx/2)-sin(nx/2))/(sin(nx/2)+cos(nx/2)))

    =(1/2)(-2)/(cos²(nx/2) - sin²(nx/2))

    = -1/cos(nx)

    所以答案错了