一道高数题:反常积分∫(上限正无穷,下限1)1/(x^2*(1+x))dx的值为() A.无穷 B.0 C.ln2 D.

1个回答

  • 问题:原积分 = ∫{x = 1 →∞} 1 / [ x²(1+x)] dx =

    方法1:

    1 / [ x²(1+x)]

    = [1 - x² +x²] / [ x²(1+x)]

    = [1 - x² ] / [ x²(1+x)] + x² / [ x²(1+x)]

    = (1 - x) / x² + 1 / (1+x)

    = [1 / x² - 1 / x + 1 / (1+x) ]

    所以:原积分 = ∫{x = 1 →∞} 1 / [ x²(1+x)] dx

    = ∫{x = 1 →∞} [1 / x² - 1 / x + 1 / (1+x) ] dx

    = - 1 / x + Ln[(1+x) / x] ----------- x = 1 →∞

    = 1 - Ln2 --------------- 选 D

    方法2:设 x = 1 / t {x = 1 →∞} →→→→→ {t = 1 →0}

    原积分 = ∫{x = 1 →∞} 1 / [ x²(1+x)] dx

    = ∫{t = 1 →0} - t / (1+t) dt

    = ∫{t = 0 →1} t / (1+t) dt ----------- t / (1+t) = 1 - 1 / (1 + t)

    = t - Ln(1+t) t = 0 →1

    = 1 - Ln2