(Ⅰ)设直线l的方程为y=k(x-1)(k≠0).
{y=k(x-1)y2=4x可得k2x2-(2k2 4)x k2=0.
设A(x1,y1),B(x2,y2),则x1 x2=2k2 4k2,x1x2=1.
∴y1y2=-4∵N(-1,0)kNA kNB=y1x1 1 y2x2 1=4y1y12 4 4y2y22 4
4[y1(y22 4) y2(y12 4)](y12 4)(y22 4)=4(-4y2 4y1-4y1 4y2)(y12 4)(y22 4)=0.
又当l垂直于x轴时,点A,B关于x轴,显然kNA kNB=0,kNA=-kNB.
综上,kNA kNB=0,kNA=-kNB.
(Ⅱ)S△NAB=|y1-y2|=(y1 y2)2-4y1y2=4(x1 x2) 8
41 1k2>4.
当l垂直于x轴时,S△NAB=4.
∴△ANB面积的最小值等于4.