因为1/n(n+2)=(1/n-1/(n+2)]/2,所以
x/(1*3)+x/(2*4)+x/(3*5)+...+x/(98*100)=14651
x(1/1-1/3+1/2-1/4+1/3-1/5+...+1/98-1/100)/2
=x(1/1+1/2-1/99-1/100)/2=14651
x(14651/9900)/2=14651
x=9900*2=19800
因为1/n(n+2)=(1/n-1/(n+2)]/2,所以
x/(1*3)+x/(2*4)+x/(3*5)+...+x/(98*100)=14651
x(1/1-1/3+1/2-1/4+1/3-1/5+...+1/98-1/100)/2
=x(1/1+1/2-1/99-1/100)/2=14651
x(14651/9900)/2=14651
x=9900*2=19800