若原题为:求sin^2α+4sinαcosα-9cos^2α得值,则:
原式= cos^2(2tan^2α+4tanα-9).
=[1/(sec^2α]*(2tan^2α+4tanα-9).
=[1/(1+tan^2α)]*(2tan^2α+4tanα-9).
=[1/(1+9)]*2*3^2+4*3-9).
=(1/10)*21.
=21/10
故选C.
若原题为:求sin^2α+4sinαcosα-9cos^2α得值,则:
原式= cos^2(2tan^2α+4tanα-9).
=[1/(sec^2α]*(2tan^2α+4tanα-9).
=[1/(1+tan^2α)]*(2tan^2α+4tanα-9).
=[1/(1+9)]*2*3^2+4*3-9).
=(1/10)*21.
=21/10
故选C.