解题思路:作AE⊥BC于点E,DF⊥BC交BC的延长线于F,再根据四边形ABCD是平行四边形,求证△ABE≌△DCF,得出AE=DF,BE=CF,由勾股定理得AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,所以AC2+BD2=2(AB2+BC2).
证明:作AE⊥BC于点E,DF⊥BC交BC的延长线于F,
则∠AEB=∠DFC=90°.
∵四边形ABCD是平行四边形,
∴AB=DC,AB∥CD,
∴∠ABE=∠DCF,
在△ABE和△DCF中,
∠AEB=∠DFC
∠ABE=∠DCF
AB=DC,
∴△ABE≌△DCF(AAS),
∴AE=DF,BE=CF.
在Rt△ACE和Rt△BDF中,由勾股定理,得
AC2=AE2+EC2=AE2+(BC-BE)2,
BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,
∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.
又∵AE2+BE2=AB2,
∴AC2+BD2=2(AB2+BC2).
点评:
本题考点: 平行四边形的性质.
考点点评: 此题主要考查学生对勾股定理、平行四边形的性质和全等三角形的性质的理解和掌握,此题涉及到的知识点较多,综合性很强,有一定的拔高难度,属于难题.