提示:设框中左上角数字为x,
则框中其它各数可表示为:
x+1,x+2,x+3,x+7,x+8,x+9,x+10,x+14,x+15,x+16,x+17,x+21,x+22,x+23,x+24,
由题意得:
x+(x+1)+(x+2)+(x+3)+…x+24=1998或1999或2000或2001,
即16x+192=2000或2080
解得x=113或118时,16x+192=2000或2080
又113÷7=16…余1,
即113是第17排1个数,
该框内的最大数为113+24=137;118÷7=16…余6,
即118是第17排第6个数,
故方框不可框得各数之和为2080.