解题思路:首先证明出∠ABD=∠ACE,再有条件BQ=AC,CF=AB可得△ABQ≌△ACF,进而得到∠F=∠BAQ,然后再根据∠F+∠FAE=90°,可得∠BAQ+∠FAE═90°,进而证出AF⊥AQ.
证明:∵BD、CE分别是AC、AB边上的高,
∴∠ADB=90°,∠AEC=90°,
∴∠ABQ+∠BAD=90°,∠BAC+∠ACE=90°,
∴∠ABD=∠ACE,
在△ABQ和△ACF中
AB=CF
∠ABD=∠ACE
BQ=AC,
∴△ABQ≌△ACF(SAS),
∴∠F=∠BAQ,
∵∠F+∠FAE=90°,
∴∠BAQ+∠FAE═90°,
∴AF⊥AQ.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法,以及全等三角形的性质定理.