a[n+1]-(n+1)=4a[n]-3n+1-(n+1)=4a[n]-4n=4(a[n]-n)
所以a[n+1]-(n+1)/(a[n]-n)=4
设bn=an-n,所以bn是等比数列,b1=1,q=4
Sbn=(4^n-1)/3
San=Sbn-(1+2+3.+n)
=(4^n-1)/3-(1+n)*n/2
=(4^n-1)/3-(n+n^2)/2
a[n+1]-(n+1)=4a[n]-3n+1-(n+1)=4a[n]-4n=4(a[n]-n)
所以a[n+1]-(n+1)/(a[n]-n)=4
设bn=an-n,所以bn是等比数列,b1=1,q=4
Sbn=(4^n-1)/3
San=Sbn-(1+2+3.+n)
=(4^n-1)/3-(1+n)*n/2
=(4^n-1)/3-(n+n^2)/2