解题思路:将(a+b)2-c2=4化为c2=(a+b)2-4=a2+b2+2ab-4,又C=60°,再利用余弦定理得c2=a2+b2-2abcosC=a2+b2-ab即可求得答案.
∵△ABC的边a、b、c满足(a+b)2-c2=4,
∴c2=(a+b)2-4=a2+b2+2ab-4,
又C=60°,由余弦定理得c2=a2+b2-2abcosC=a2+b2-ab,
∴2ab-4=-ab,
∴ab=[4/3].
故答案为:[4/3].
点评:
本题考点: 余弦定理.
考点点评: 本题考查余弦定理,考查代换与运算的能力,属于基础题.