∵e=√(a^2-b^2)/a=√2/2,∴a^2-b^2=a^2/2,∴a^2=2b^2.
设椭圆与直线的交点坐标是A(m,n),B(p,q).
将直线方程改写成:y=-x-1,代入椭圆方程中,得:x^2/a^2+(-x-1)^2/b^2=1,
∴x^2/(2b^2)+(-x-1)^2/b^2=1,∴x^2+2(x+1)^2=2b^2,
∴x^2+x^2+2x+2=2b^2,∴3x^2+2x+2-2b^2=0.
很明显,m、p的值是方程3x^2+2x+2-2b^2=0的两根,由韦达定理,有:
m+p=-2/3, mp=(2-2b^2)/3.
∵OA⊥OB,又OA的斜率=n/m,OB的斜率=q/p,∴nq/(mp)=-1,
而显然有:n=-m-1, q=-p-1,∴(-m-1)(-p-1)/(mp)=-1,
∴[mp+(m+p)+1]/(mp)=-1,∴mp+(m+p)+1=-mp,
∴(m+p)=-2mp-1,∴(2-2b^2)/3=-2×(-2/3)-1=-1/3,
∴2-2b^2=-1,∴2b^2=3,∴b^2=3/2,得:a^2=2b^2=3.
∴要求的椭圆方程是:x^2/3+y^2/(3/2)=1.