设x1、x2∈R,且x1>x2,则
f(x1)-f(x2)
= x1³-x2³
=(x1-x2)(x1²+x1x2+x2²)
=(x1-x2)[(x1+x2/2)²+(3/4)x2²]
因为x1-x2>0,(x1+x2/2)²+(3/4)x2²>0,所以
(x1-x2)[(x1+x2/2)²+(3/4)x2²]>0,即
f(x1)-f(x2)>0,即
f(x1)>f(x2)
所以函数f(x)=x³单调递增
设x1、x2∈R,且x1>x2,则
f(x1)-f(x2)
= x1³-x2³
=(x1-x2)(x1²+x1x2+x2²)
=(x1-x2)[(x1+x2/2)²+(3/4)x2²]
因为x1-x2>0,(x1+x2/2)²+(3/4)x2²>0,所以
(x1-x2)[(x1+x2/2)²+(3/4)x2²]>0,即
f(x1)-f(x2)>0,即
f(x1)>f(x2)
所以函数f(x)=x³单调递增