f(x)=(1-cos2wx)/2+√3/2*sin2x
=(√3/2)sin2wx-1/2*cos2wx+1/2
=√[(√3/2)^2+(1/2)^2]*sin(2wx-z)+1/2
其中tanz=(1/2)/(√3/2)
所以z=π/6
所以f(x)=sin(2wx-π/6/6)+1/2
T=2π/|2w|=π
w>0
所以w=1
f(x)=sin(2x-π/6)+1/2
0
f(x)=(1-cos2wx)/2+√3/2*sin2x
=(√3/2)sin2wx-1/2*cos2wx+1/2
=√[(√3/2)^2+(1/2)^2]*sin(2wx-z)+1/2
其中tanz=(1/2)/(√3/2)
所以z=π/6
所以f(x)=sin(2wx-π/6/6)+1/2
T=2π/|2w|=π
w>0
所以w=1
f(x)=sin(2x-π/6)+1/2
0