考察一般项:
an+a(n+3)=a1+(n-1)d+a1+(n+2)d=2a1+(2n+1)d
a1+a4=2a1+3d
[a(n+1)+a(n+1+3)]-[an+a(n+3)]
=[2a1+[2(n+1)+1]d]-[2a1+(2n+1)d]
=2d,为定值.
数列是以2a1+3d为首项,2d为公差的等差数列.
考察一般项:
an+a(n+3)=a1+(n-1)d+a1+(n+2)d=2a1+(2n+1)d
a1+a4=2a1+3d
[a(n+1)+a(n+1+3)]-[an+a(n+3)]
=[2a1+[2(n+1)+1]d]-[2a1+(2n+1)d]
=2d,为定值.
数列是以2a1+3d为首项,2d为公差的等差数列.