解题思路:连接OD,如图,利用角平分线的定义得到∠BAD=∠CAD,则根据圆周角定理得弧BD=弧CD,于是可根据垂径定理得到OD⊥BC,易得OD∥AH,根据平行线的性质得∠D=∠2,加上∠1=∠D,所以∠1=∠2.
证明:连接OD,如图,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴弧BD=弧CD,
∴OD⊥BC,
又∵AH⊥BC,
∴OD∥AH,
∴∠D=∠2,
∵OA=OD,
∴∠1=∠D,
∴∠1=∠2,
即AD平分∠HAO.
点评:
本题考点: A:圆周角定理 B:平行线的判定与性质 C:垂径定理
考点点评: 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.