答:
xy=x-e^(xy)
e^(xy)=x-xy=x(1-y)
两边对x求导:
(xy)' e^(xy)=1-y-xy'
(y+xy')e^(xy)=1-y-xy'
ye^(xy)+xy'e^(xy)+xy'=1-y
[ 1+e^(xy) ] xy'=1-y-ye^(xy)
y'=dy/dx= [ 1-y -ye^(xy) ] / [ x+xe^(xy) ]
答:
xy=x-e^(xy)
e^(xy)=x-xy=x(1-y)
两边对x求导:
(xy)' e^(xy)=1-y-xy'
(y+xy')e^(xy)=1-y-xy'
ye^(xy)+xy'e^(xy)+xy'=1-y
[ 1+e^(xy) ] xy'=1-y-ye^(xy)
y'=dy/dx= [ 1-y -ye^(xy) ] / [ x+xe^(xy) ]