(1)∵四边形ABCD为矩形,AE⊥BD,
∴∠1+∠ABD=∠ADB+∠ABD=∠2+∠ABD=90°,
∴∠ACB=∠ADB=∠2=∠1=30°,
又AO=BO,
∴△AOB为等边三角形,
∴∠BOC=120°;
(2)由(1)知,△DOC≌△AOB,
∴△DOC为等边三角形,
∴OD=OC=CD=OB=6,
∴△DOC的周长=3×6=18。
(1)∵四边形ABCD为矩形,AE⊥BD,
∴∠1+∠ABD=∠ADB+∠ABD=∠2+∠ABD=90°,
∴∠ACB=∠ADB=∠2=∠1=30°,
又AO=BO,
∴△AOB为等边三角形,
∴∠BOC=120°;
(2)由(1)知,△DOC≌△AOB,
∴△DOC为等边三角形,
∴OD=OC=CD=OB=6,
∴△DOC的周长=3×6=18。