解∫(-4,2)e^/x/2/dx
=∫(-4,0)e^/x/2/dx+∫(0,2)e^/x/2/dx
=∫(-4,0)e^(-x/2)dx+∫(0,2)e^(x/2)dx
=(-2e^(-x/2))/(-4,0)+(2e^(x/2))/(0,2)
=(-2e^(-0/2))-[-2e^(-(-4)/2)]+(2e^(2/2))-(2e^(0/2))
=-2+2e^2+2e^1-2×1
=2e^2+2e^1-4
解∫(-4,2)e^/x/2/dx
=∫(-4,0)e^/x/2/dx+∫(0,2)e^/x/2/dx
=∫(-4,0)e^(-x/2)dx+∫(0,2)e^(x/2)dx
=(-2e^(-x/2))/(-4,0)+(2e^(x/2))/(0,2)
=(-2e^(-0/2))-[-2e^(-(-4)/2)]+(2e^(2/2))-(2e^(0/2))
=-2+2e^2+2e^1-2×1
=2e^2+2e^1-4