设2008-a=x 2007-a=y则 xy=2003 x-y=1
(x-y)^2 =x^2 + y^2 - 2 xy 所以x^2 + y^2可求得1+2003*2=4007
(x^2+y^2)^2=x^4 + y^4 + 2 x^2y^2
(x^2-y^2)^2=x^4 + y^4 - 2 x^2y^2 = x^4 + y^4 + 2 x^2y^2 - 4 x^2y^2
=(x^2+y^2)^2 - 4 x^2y^2=4007^2-4*2003^2
x^2-y^2=2834.1
设2008-a=x 2007-a=y则 xy=2003 x-y=1
(x-y)^2 =x^2 + y^2 - 2 xy 所以x^2 + y^2可求得1+2003*2=4007
(x^2+y^2)^2=x^4 + y^4 + 2 x^2y^2
(x^2-y^2)^2=x^4 + y^4 - 2 x^2y^2 = x^4 + y^4 + 2 x^2y^2 - 4 x^2y^2
=(x^2+y^2)^2 - 4 x^2y^2=4007^2-4*2003^2
x^2-y^2=2834.1