先求导,得f'(x)=-x^2+2x+a
然后用待定系数法,
f'(x)=-x^2+2x+a<2a^2
f'(x)=-x^2+2x<2a^2-a
设y=-x^2+2x,求出Y的最大值为1
∴ 2a^2-a>1
得 2(a-1)(a+1/2)>0
∴a<-1/2或a>1
先求导,得f'(x)=-x^2+2x+a
然后用待定系数法,
f'(x)=-x^2+2x+a<2a^2
f'(x)=-x^2+2x<2a^2-a
设y=-x^2+2x,求出Y的最大值为1
∴ 2a^2-a>1
得 2(a-1)(a+1/2)>0
∴a<-1/2或a>1