如图,已知正三棱柱ABC-A 1 B 1 C 1 的底面边长为2,侧棱长为3,点E在侧棱AA 1 上,点F在侧棱BB 1

1个回答

  • (1)由已知可得

    于是有

    所以C 1E⊥EF,C 1E⊥CE

    又EF∩CE=E,

    所以C 1E⊥平面CEF

    由CF

    平面CEF,故CF⊥C 1E。

    (2)在△CEF中,由(1)可得

    于是有EF 2+CF 2=CE 2

    所以CF⊥EF

    又由(1)知CF⊥C 1E,且EF∩C 1E=E,

    所以CF⊥平面C 1EF

    又C 1F

    平面C 1EF,故CF⊥C 1F

    于是∠EFC 1即为二面角E-CF-C 1的平面角

    由(1)知△C 1EF是等腰直角三角形,

    所以∠EFC 1=45°,

    即所求二面角E-CF-C 1的大小为45°。