(1+tanA)(1+tabB)=2
1+tanA+tanB+tabAtabB=2
tanA+tanB+tanAtanB=1
sinA/cosA+sinB/cosB+sinA/cosA*sinB/cosB=1
sinAcosB+cosAsinB+sinAsinB-cosAcosB=0
sin(A+B)-cos(A+B)=0
sin(A+B)=cos(A+B)
A+B≠π/2, cos(A+B)≠0
所以 tan(A+B)=1
A+B=π/4
(1+tanA)(1+tabB)=2
1+tanA+tanB+tabAtabB=2
tanA+tanB+tanAtanB=1
sinA/cosA+sinB/cosB+sinA/cosA*sinB/cosB=1
sinAcosB+cosAsinB+sinAsinB-cosAcosB=0
sin(A+B)-cos(A+B)=0
sin(A+B)=cos(A+B)
A+B≠π/2, cos(A+B)≠0
所以 tan(A+B)=1
A+B=π/4