两数列{an} {bn}满足bn=(a1+2a2+3a3+4a4+5a5+.+nan)/(1+2+3+4+.+n)
1个回答
把分母乘过去
写类比式子
相减就可以了
相关问题
设A1=2,A2=4,数列{Bn}满足:Bn=A(n+1)-An,B(n+1)=3Bn+2
数列an,bn满足bn=a1+2a2+3a3...nan\1+2+3+...n,若bn是等差数列,求证an是等差数列
数列{an}满足a1=1,a2=2,an=1/2(an-1+an-2)(n=3,4...),数列{bn}满足bn=an+
已知数列{an}是公比大于1的等比数列,满足a3•a4=128,a2+a5=36;数列{bn}满足bn+1=2bn-bn
已知数列{an}和{bn}满足:bn=(a1+2a2+3a3+…+nan)/(1+2+3+…+n)求当{an}是等差数列
数列an,bn 中a1=1,b1=5/2,且a(n+1)=3an-2bn,b(n+1)=5an-4bn,求an,bn
已知数列{an}为等差数列,且满足a2=3,a4+a5+a6=18,数列{bn}满足b1=1,bn+1=2bn+1
数列{an}中,a1=-1,a2=0,a(n+1)+4a(n-1)=4an(n>=2),数列bn满足 bn=a(n+1)
数列{an},{bn}满足a1=k,a(n+1)=(2/3)an+n-4,bn=(-1)^n(an-3n+21) 其中k
设数列an满足a1+2a2+3a3+.+nan=2^n(n属于N*)求数列an的通项公式 设bn=n^2an,求数列bn