设u=y^2
2x^2yy'=x^2d(y^2)/dx=x^2du/dx
x^2du/dx=u+1
du/(u+1)=dx/x^2
ln(u+1)=C-1/x
u=-1+e^(C-1/x)=-1+C'e^(-x)
y=sqrt(-1+C'e^(-x))
设u=y^2
2x^2yy'=x^2d(y^2)/dx=x^2du/dx
x^2du/dx=u+1
du/(u+1)=dx/x^2
ln(u+1)=C-1/x
u=-1+e^(C-1/x)=-1+C'e^(-x)
y=sqrt(-1+C'e^(-x))