1.设X1,X2...X10∈N+,且满足X1+X2+...X10=50,求X1^2+X2^2+X3^2+...+X10

2个回答

  • 现在没时间,只能粗略的帮你看一下!第二题的话,因为我自己是搞信息学竞赛的,所以运用sg函数的原理(其实就是博弈类算法)就很简单了,如果是一般数学证明那就得想一想.

    至于第一题的话,首先你必须明白,数学是个讲逻辑,讲道理的学科,但是道理并不是唯一的,一道数学题可以有很多种的解法,所以我们应该多角度去分析,去解决,而不是仅仅拘泥于书本!好了,废话讲完了,现在开始正式分析第一题.

    1.先解释一下(x1-1)^2+(x2+1)^2这东西是怎么来的,我们留意一下题设,x1,x2.x10都属于N+,对于N+这个集合,x=1永远都是值得我们注意的一个解题的突破口!(这点非常重要!)所以我们可以假设x1,x2...x10这10个元素恒大于1,也就是题目的解法:设X1≤X2≤...X10 且X1>1,在这个条件下如果证明与题设矛盾(也就是取不到最大值),那么我们就可以肯定这10个元素中最少存在1个x=1)(事实上这道题目有9个x=1),好了,然后我们就可以这样顺着我们的思路去解了,首先,如果存在x1,x2.x10这个十元组是原题的一个试解(也就是符合要求但不知道是不是最大),那么x1-1,x2+1.x10这个新的十元组当然也是原题的一个试解!(和=50不变,且我们当时假设x1>1,所以x1-1属于N+),然后我们再比较x1^2+x2^2和(x1-1)^2+(x2+1)^2,明显有前者少于后者,也就是说x1-1,x2+1.x10这个十元组比x1,x2...x10更优!然后我们根据迭代(也就是数学归纳)可以得出x1=1的时候x1=1,x2...x10这个十元组最优!当然,对于x2,x3...x10我们也同理可得!

    最后就可以得出x1=x2=x3=...=x9=1,x10=41,这时的十元组就是最大的解了!

    (ps:可能写得有点罗嗦和模糊,如果有什么不懂的,可以随时M我,希望可以帮到你!)