( 1 ) ∵∠PBC+∠PCB+∠BPC=180°
∴∠PBC=60°× 1/2 =30°
∠BPC=180°- 30°- 20° =130°
( 2 )
设∠ABC=x,∠ACB=100-x
∵BD,CE分别是∠ABC,∠ACB的平分线.
∴∠DBC=x/2,∠ECB=(100-x)/2
∴∠BPC=180-x/2-(100-x)/2=130°
( 1 ) ∵∠PBC+∠PCB+∠BPC=180°
∴∠PBC=60°× 1/2 =30°
∠BPC=180°- 30°- 20° =130°
( 2 )
设∠ABC=x,∠ACB=100-x
∵BD,CE分别是∠ABC,∠ACB的平分线.
∴∠DBC=x/2,∠ECB=(100-x)/2
∴∠BPC=180-x/2-(100-x)/2=130°