证明下列等式(1+1/cosx+tanx)/(1+1/cosx-tanx)=(1+sinx)/cosx

1个回答

  • 证明:

    (1+1/cosx+tanx)/(1+1/cosx-tanx)

    =(cosx/cosx+1/cosx+sinx/cosx)/(cosx/cosx+1/cosx-sinx/cosx)

    分子分母同时乘以cosx

    =(cosx+1+sinx)/(cosx+1-sinx)

    分子分母同时乘以cosx

    =(cos²x+cosx+sinxcosx)/[cosx*(cosx+1-sinx)]

    =(1-sin²x+cosx+sinxcosx)/[cosx*(cosx+1-sinx)]

    =[(1-sinx)(1+sinx)+cosx(1+sinx)]/[cosx*(cosx+1-sinx)]

    =(1+sinx)(1-sinx+cosx)/[cosx*(cosx+1-sinx)]

    =(1+sinx)/cosx

    ∴ 等式成立.