已知函数f(x)=x^2-4ax+2a+6,(a∈R),求

1个回答

  • 1.

    函数f(x)=x^2-4ax+2a+6求函数的值域为【0,+无穷大)

    可知判别式一定等于0(方程)

    16a^2-4(2a+6)=0

    2a^2-a-3=0

    (a+1)(2a-3)=0

    a=-1,a=3/2

    2.

    题意可知x^2-4ax+2a+6≥0恒成立

    则△=16a²-4(2a+6)≤0

    2a²-a-3≤0

    => -1≤a≤3/2

    g(a)=2-a|a+3|

    则因-1≤a≤3/2,则a+3>0

    g(a)=2-a(a+3)

    =-(a+3/2)²+17/4 ( -1≤a≤3/2)

    g(a)min=g(3/2)=-19/4,g(a)max=g(-1)=4

    g(a)∈[-19/4,4]