an=x^n/n+1=x^(n+1)/x(n+1)=(1/x) x^(n+1)/(n+1)
设bn=x^(n+1)/(n+1)
an=(1/x)*bn
S(bn)=∑(x^(n+1)/(n+1)
S(bn)'=∑ x^n= x*(1-x^n)/(1-x)=x/(1-x)
S(bx)=∫xdx/(1-x)=∫-dx+∫dx/(1-x)=-x-ln|1-x|
S(x)=x*S(bx)=-1+(-1/x)ln|1-x|
an=x^n/n+1=x^(n+1)/x(n+1)=(1/x) x^(n+1)/(n+1)
设bn=x^(n+1)/(n+1)
an=(1/x)*bn
S(bn)=∑(x^(n+1)/(n+1)
S(bn)'=∑ x^n= x*(1-x^n)/(1-x)=x/(1-x)
S(bx)=∫xdx/(1-x)=∫-dx+∫dx/(1-x)=-x-ln|1-x|
S(x)=x*S(bx)=-1+(-1/x)ln|1-x|