已知直线l1:(t+2)x+(1-t)y=1,l2:(t-1)x+(2t+3)y+2=0互相垂直
l1:
(t+2)x+(1-t)y=1
y=-[(t+2)/(1-t)] x + 1/(1-t)
m1 =-(t+2)/(1-t) x
l2:
(t-1)x+(2t+3)y+2=0
y = -[(t-1)/(2t+3)] x - 2/(2t+3)
m2 =-(t-1)/(2t+3)
m1m2 = -1
[(t+2)/(1-t)][(t-1)/(2t+3)] =-1
t+2= 2t+3
t=-1
已知直线l1:(t+2)x+(1-t)y=1,l2:(t-1)x+(2t+3)y+2=0互相垂直
l1:
(t+2)x+(1-t)y=1
y=-[(t+2)/(1-t)] x + 1/(1-t)
m1 =-(t+2)/(1-t) x
l2:
(t-1)x+(2t+3)y+2=0
y = -[(t-1)/(2t+3)] x - 2/(2t+3)
m2 =-(t-1)/(2t+3)
m1m2 = -1
[(t+2)/(1-t)][(t-1)/(2t+3)] =-1
t+2= 2t+3
t=-1