设a^2+2002a=b^2
a^2+2002a+1001^2=b^2+1001^2
(a+1001)^2=b^2+1001^2
设a+1001、b、1001分别是直角三角形的三边,其中a+1001是斜边,由于a要尽量大,所以设1001是最小的边.
由于斜边要尽量大,而且三边长度都是整数,那么有b=a+1001-1,即另一条直角边比斜边小1,得方程:
(a+1001)^2-(a+1000)^2=1001^2
a^2+2002a+1001^2-a^2-2000a-1000^2=1001^2
2a=1000^2
a=500000
所以得解.