第一题等式第一项乘个(2-1),在和(2+1)使用平方差公式,得(2^2-1),再和(2^2+1),使用平方差,依此类推,结果为2^64.
求解以下两式的值:1、(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64
5个回答
相关问题
-
(2+1)(2∧2+1)(2∧4+1)(2∧8+1)(2∧16+1)(2∧32+1)-2∧64求值
-
(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1),
-
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)=?
-
计算:(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)
-
(1)已知m=(2+1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)*(2^64
-
1/2+1/4+1/8+1/16+1/32+1/64简便运算=﹙1/2+1/4+1/8+1/16+1/32+1/64+1
-
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1的末位数字.
-
已知,A=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)(2^12
-
求值:(2+1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)-2^32
-
试确定(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)的末位数字.