因为对于任意有理数a,b,关于xy的二元一次方程(a-b)x-(a+b)y=a+b都有一组公共解,
所以,令a=1,b=-1(a+b=0)
则(a-b)x-(a+b)y=a+b整理为:
2x=0
x=0,
又令a=b=1,(a-b=0)
则(a-b)x-(a+b)y=a+b整理为:
-2y=2
y=-1
所以公共解为:x=0,y=-1.
因为对于任意有理数a,b,关于xy的二元一次方程(a-b)x-(a+b)y=a+b都有一组公共解,
所以,令a=1,b=-1(a+b=0)
则(a-b)x-(a+b)y=a+b整理为:
2x=0
x=0,
又令a=b=1,(a-b=0)
则(a-b)x-(a+b)y=a+b整理为:
-2y=2
y=-1
所以公共解为:x=0,y=-1.