设椭圆方程为
x^2/a^2+y^2/b^2=1
求导得
2x/a^2+2yy'/b^2=0
2yy'/b^2=-2x/a^2
y'=-b^2x/a^2y
把(x0,y0)代入x与y
y'=k=-b^2x0/a^2y0
所以切线方程是
y-y0=-b^2x0(x-x0)/a^2y0
设椭圆方程为
x^2/a^2+y^2/b^2=1
求导得
2x/a^2+2yy'/b^2=0
2yy'/b^2=-2x/a^2
y'=-b^2x/a^2y
把(x0,y0)代入x与y
y'=k=-b^2x0/a^2y0
所以切线方程是
y-y0=-b^2x0(x-x0)/a^2y0