(1) f(x)=
1
2 sinx+
1+cosx
2 -
1
2
=
1
2 (sinx+cosx)
=
2
2 sin(x+
π
4 ) ;
∴函数最小正周期为2π
根据正弦函数的单调性可知,当2kπ+
π
2 ≤x+
π
4 ≤2kπ+
3π
2 (k∈Z)时,函数单调减
∴2kπ+
π
4 ≤x≤2kπ+
5π
4 为函数的单调递减区间.
(2)∵ -
π
4 ≤α≤π
即 0≤α+
π
4 ≤
5π
4 ,
∴ f(x ) max =f(
π
4 )=
2
2 ,
f(x ) min =f(π)=-
1
2 .