课堂上,老师将图(1)中△AOB绕O点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化,当

1个回答

  • 课堂上,老师将图①中△AOB绕O点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化当△AOB旋转90°时,得到△A1OB1.已知A(4,2)、B(3,0).

    (1)△A1OB1的面积是 ;

    A1点的坐标为( , ;B1点的坐标为( , );

    (2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB绕AO的中点C(2,1)逆时

    针旋转90°得到△A′O′B′,设O′B′交OA于D,O′A′交 轴于E.此时A′、O′和B′的坐标分别为(1,3)、(3,-1)和(3,2),且O′B′ 经过B点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD的面积)最小,求四边形CFBD的面积;

    (3)在(2)的条件一下,△AOB外接圆的半径等于 .

    用定义,外接圆的圆心是边的垂直平分线的交点!

    本题中:

    外接圆的圆心就是OB的垂直平分线与A'O'的交点!

    B(3,0)

    所以:圆心横坐标是3/2.

    A'(1,3), C(2,1)

    所以,圆心就是AC的中点!

    坐标(3/2,2)

    所以外接圆的半径就是到O的距离=5/2.

    内切圆的半径r一般用面积法:

    S△ABC=a*r/2+b*r/2+c*r/2

    r=2S/(a+b+c).

    另外,到高中,正弦定理可知:

    外接圆的半径R: