抛物线过点A(3,0),B(-1,0),C(0,3)三点,点D是该抛物线的顶点,(1)求解析式(2)求△ACD的面积(3

1个回答

  • (1)

    与x轴交于A, B, 则可表达为y = a(x - 3)(x + 1)

    过C: 3 = a(0 -3)(0 + 1), a = -1

    y = -x² + 2x + 3

    (2)

    对称轴x = (3 - 1)/2 = 1

    顶点D(1, 4)

    AC解析式: x/3 + y/3 = 1, x + y - 3 = 0

    AC = √[(3 - 0)² + (0 -3)²] = 3√2

    D与AC的距离h = |1 + 4 - 3|/√2 = √2

    △ACD的面积 = (1/2)*3√2*√2 = 3

    (3)

    显然,过P的抛物线的切线与AC平行时, △PAC面积最大

    AC解析式: y = 3 - x

    设切线y = -x + b

    -x + b = -x² + 2x + 3

    x² - 3x + b - 3 = 0

    ∆ = 9 - 4b + 12 = 0, b = 21/4

    x = 3/2

    P(3/2, 15/4)

    P与AC的距离h = |3/2 + 15/4 - 3|/√2 = 21√2/8

    S = (1/2)*3√2*21√2/8 = 63/8

    (4)

    21√2/8