(1)当m+6≠0时,欲使函数y 与x轴有交点,即是
方程 (m+6)x^2+2(m-1)x+m+1=0 的判别式 ≥0
即有:
4(m-1)^2-4(m+6)(m-1)≥0
解得:m≤-5/9
当m+6=0,即m=-6时,函数y=-14x-5 的图像与x轴也有交点
所以m的范围是 m≤-5/9 或 m=0
(1)当m+6≠0时,欲使函数y 与x轴有交点,即是
方程 (m+6)x^2+2(m-1)x+m+1=0 的判别式 ≥0
即有:
4(m-1)^2-4(m+6)(m-1)≥0
解得:m≤-5/9
当m+6=0,即m=-6时,函数y=-14x-5 的图像与x轴也有交点
所以m的范围是 m≤-5/9 或 m=0