tan(A+B)=tan(π-C)=-tanC=1
C=3π/4=135°
tanA>tanB,A>B,所以BC>AC
AC为最短边
tanB=1/2 AB=c=1
sinB=√5/5
AC/sinB=AB/sinC
AC=sinB/sinC=√5/5√(√2/2)
=√10/10
tan(A+B)=tan(π-C)=-tanC=1
C=3π/4=135°
tanA>tanB,A>B,所以BC>AC
AC为最短边
tanB=1/2 AB=c=1
sinB=√5/5
AC/sinB=AB/sinC
AC=sinB/sinC=√5/5√(√2/2)
=√10/10