1.=π/2,
有0=a*b=sinx-cosx=√2*√2/2sinx-√2*√2/2cosx
=√2sinxcosπ/4-√2sinπ/4cosx
=√2sin(x-π/4)
x-π/4=kπ,k是整数
x=kπ+π/4,k是整数
2.|a-b|^2=(sinx+1)^2+(cosx-1)^2
=3+2(sinx-cosx)
=3+2√2sin(x-π/4)≤3+2√2=(1+√2)^2
故|a-b|的最大值为1+√2
1.=π/2,
有0=a*b=sinx-cosx=√2*√2/2sinx-√2*√2/2cosx
=√2sinxcosπ/4-√2sinπ/4cosx
=√2sin(x-π/4)
x-π/4=kπ,k是整数
x=kπ+π/4,k是整数
2.|a-b|^2=(sinx+1)^2+(cosx-1)^2
=3+2(sinx-cosx)
=3+2√2sin(x-π/4)≤3+2√2=(1+√2)^2
故|a-b|的最大值为1+√2