y=f(x)在区间[a,b]上是增函数
证明:
已知f(x)在区间[-b,-a] (b>a>0)上是减函数
所以f(x)在区间[-b,-a]上有,f(-b)-f(-a)>0
因为f(x)是奇函数
所以-f(b)+f(a)>0
即在区间[a,b]内,f(a)-f(b)>0
所以f(x)在R上为减函数
因为f(x)在区间[-b,-a] (b>a>0)上时,f(x)>0
所以f(x)在区间[a,b]内,f(x)0
所以[-f(a)]-[-f(b)]>0
即f(b)-f(a)>0
所以函数y=|f(x)|在区间[a,b]上是增函数