设e^xy-xy^2=Siny,求dy/dx
1个回答
你好!
两边对x求导:
e^(xy) *(y+xy') - y^2 = y' cosy
解得 y' = (y^2 - ye^(xy) ) / ( xe^(xy) - cosy )
相关问题
siny+e^x-xy^2=0,求dy/dx
设xy-e^xy=e 求dy/dx
设siny+ex(是e的x次方)-xy=0.求dy/dx
设sinxy+e^xy=ax,求dy/dx
求由siny+e-xy=e确定的隐函数y的倒数dy/dx
求导:xy=x-e^xy,求dy/dx
设函数y=y(x)是由方程xy+siny+x^2-√e=0所确定的隐函数,求dy/dx
[e^x+f(x,y)]dx+(siny+xy)dy=0为恰当微分方程求f(x,y)
设y+ln(xy)=1 求dy/dx
y=f(x)由方程xy+e^xy+y=e确定,求dy/dx和d^2y/dx^2