y=(1/sinx)+(1/cosx)+(1/sinxcosx)
=(sinx+cosx+1)/(sinxcosx)
令t=sinx+cosx=根号2sin(x+π/4)
∵x∈(0,π/2),∴ t∈(1,根号2)
那么2sinxcosx=(sinx+cosx)²-sin²x-cos²x=t²-1
∴
y=2(t+1)/(t²-1)
方法1:
y=(2t+2)/(t²-1),t∈(1,根号2]
1/y=(t²-1)/2(t+1)= [(t+1)²-2(t+1)]/2(t+1)
1/y= (t+1)/2 -1
∵t∈(1,根号2]
∴1/y ∈(0,(根号2-1)/2]
∴y>=2/(根号2-1)=2+2根号2