因为函数是偶函数,
所以f(x)=f(-x)
得(e^x)/a+a/(e^x)=e^(-x)/a+a/[(e^(-x))]
(e^x)/a+a/(e^x)=1/(ae^x)+ae^x
即(e^x)(1/a-a)+(a-1/a)/(e^x)=0
(a-1/a)[1/(e^x)-e^x]=0
由于x的任意性,只有a-1/a=0
即a^2-1=0
由a>0,故a=1.
因为函数是偶函数,
所以f(x)=f(-x)
得(e^x)/a+a/(e^x)=e^(-x)/a+a/[(e^(-x))]
(e^x)/a+a/(e^x)=1/(ae^x)+ae^x
即(e^x)(1/a-a)+(a-1/a)/(e^x)=0
(a-1/a)[1/(e^x)-e^x]=0
由于x的任意性,只有a-1/a=0
即a^2-1=0
由a>0,故a=1.