左边=1/[(sin^2)a(cos^)a]-(cos^2)a/(sin^2)a
=[1-(cos^4)a]/[(sin^2)a(cos^2)a]
=[1+(cos^2)a] [1-(cos^2)a]/[(sin^2)a(cos^2)a]
=[1+(cos^2)a]/(cos^2)a
= [(sin^2)a+(cos^2)a+(cos^2)a]/(cos^2)a
=[(sin^2)a+2(cos^2)a]/(cos^2)a
=(tan^2)a+2=右边
左边=1/[(sin^2)a(cos^)a]-(cos^2)a/(sin^2)a
=[1-(cos^4)a]/[(sin^2)a(cos^2)a]
=[1+(cos^2)a] [1-(cos^2)a]/[(sin^2)a(cos^2)a]
=[1+(cos^2)a]/(cos^2)a
= [(sin^2)a+(cos^2)a+(cos^2)a]/(cos^2)a
=[(sin^2)a+2(cos^2)a]/(cos^2)a
=(tan^2)a+2=右边