n□(n+1)=[(n+1)-n]/n(n+1)
=1/n(n+1)
=1/n-1/(n+1)
所以原式=1/1*2-(1/2*3+1/3*4+……+1/2012*2013)
=1/2-(1/2-1/3+1/3-1/4+……+1/2012-1/2013)
=1/2-(1/2-1/2013)
=1/2013
n□(n+1)=[(n+1)-n]/n(n+1)
=1/n(n+1)
=1/n-1/(n+1)
所以原式=1/1*2-(1/2*3+1/3*4+……+1/2012*2013)
=1/2-(1/2-1/3+1/3-1/4+……+1/2012-1/2013)
=1/2-(1/2-1/2013)
=1/2013